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This paper presents a three-dimensional viscous vortex method for the simulation
of particulate flows with two-way coupling. The flow is computed using Lagrangian
vortex elements advected with the local velocity, while their strength is modified to
account for viscous diffusion, vortex stretching, and generating vorticity induced by
the particles. The solid particles move according to viscous drag and gravity, creating
vorticity, which is discretised using vortex elements. This method adaptively tracks
the evolution of the vorticity field and the generation of new computational elements
to account for the vorticity source term. A key aspect of the present scheme is the re-
meshing of the computational elements to adaptively accommodate the production
of vorticity induced by the solid particles, and to ensure sufficient support for the
proper resolution of the diffusion equation. High-order moment-conserving formulas
are implemented to maintain the adaptive character of the method while they remain
local to minimize the computational cost. These formulas are also implemented in
the particle—mesh interpolation of the field and particle quantities in the context of
a Vortex-in-Cell algorithm. The method is validated against the results of a related
finite-difference study for an axisymmetric swirling flow with particles. The method
is then applied to the study of a three-dimensional particle blob falling under the effect
of gravity. It is shown that drastically different behaviours are found depending on
the presence of an initial vorticity field.c 2001 Academic Press

Key Wordsvortex methods; particle-laden flows; Lagrangian method.

1. INTRODUCTION

The frequent occurrence of particle-laden flows in nature and industry has made this f
an active area of research in the last decades. The physical problems range from env
mental particulate pollution problems [24] to particulate flows in fluidised bed reactol
particle generation and reaction processes, and solids transport and separation [16].
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Traditionally, aone-waycoupling between the phases has been employaetiltge sys-
tems, but the preferential accumulation of solid particles in regions of high fluid stre
rate and low vorticity [18] can result in high values of the local particle concentratio
indicating the presence of a significant (local) coupling of the two phases. Thus, e
in nominally dilute systems, it is desirable that the numerical method allotmsavay
transfer of momentum between the particulate and fluid phases. In simulations of pal
ulate flows with two-way coupling the solid particles are advanced by solving Newtor
law of motion with forces that account for the hydrodynamic interaction with the flo
field (e.g., Stokes drag, buoyancy, added mass, etc.). At the same time, their motion
parts vorticity onto the neighbouring fluid elements. The proper generation of vortici
(and accordingly the completavo-way coupling) for each solid particle would involve
the solution of the Navier—Stokes equation around each particle [21], which for ve
large number of particles is presently a computationally intractable task. Alternative
the generation of vorticity induced by the solid particles can be modelled to enforce n
mentum conservation with the model forces induced on the solid particles by the flt
flow.

A key aspect of the simulation of particle-laden flows is the interpolation of flow quantitie
between the solid particles and the computational elements. These computational elen
may be Eulerian as in finite-difference and spectral element methods [20] or Lagrangiar
the vortex elements used in the present study. The governing flow equations are solve
these elements by taking into account the particle forcing in terms of vorticity generatit
Inturn, fluid velocity is interpolated from the computational elements onto the solid particl
to determine the hydrodynamic forces.

Simulations of particle-laden flows using particle (vortex) methods offer an interesti
alternative to grid-based methods due to their inherent adaptivity and the minimal amo
of numerical dissipation associated with the discretisation of the non-linear convect
term. Efficient computations are possible by using fast multipole algorithms for flows
unbounded domains and hybrid algorithms (such as particle—-mesh) for unbounded and
odic domains. However, issues such as the distortion of the computational particles anc
interpolation of particle quantities onto the Lagrangian computational elements has not b
extensively addressed in the past; in particular, in the context of three-dimensional sim
tions. In this paper it is shown that these issues can be accurately resolved by implemer
effective re-meshing formulas.

We consider flows in periodic domains and the present work extends the Vortex-in-C
(VIC) algorithm originally proposed for the study of plasma by Birdsall and Fuss [4], ar
later applied to fluid flow problems by Christiansen [12] to the study of three-dimension
two-phase particulate viscous flows with a two-way coupling of the phases.

A key aspect for the convergence of vortex methods is the enforcement of the part
overlap throughout the evolution of the flow field. We ensure the accuracy of the mett
and the accurate treatment of the two-way coupling by applying a re-meshing strateg;
the vortex elements, allowing these to be created where the vorticity source termis r
negligible. The re-meshing also secures a proper discretisation of the diffusion whict
computed using the Particle Strength Exchange (PSE) scheme by Degond and Mas-C
[17]. The forces acting on the solid particles include viscous drag, but implementation
additional forces (e.g., added mass and lift forces) [33] is straightforward.

Particle (vortex) methods have been applied to a number of studies of particulate flc
including two-dimensional studies of Rayleigh—Taylor instability [1, 25, 49, 51, 52], mixin
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layers [7, 8, 32], and of wakes [46]. Three-dimensional simulations include the work
Brecht and Ferrante [5, 6] for studies of inviscid buoyant bubbles.

Recently, Chen and Marshall [8] proposed a two-dimensional particle (vortex) meth
for particulate flows with two-way coupling. The coupling was achieved through a vortici
source term, and the (vortex) particle support by a particle creation scheme. In the cor
of particle (vortex) methods, the present study is one of the first studies to consider th
dimensional, viscous, particulate flow.

The present algorithm is validated by considering the particle laden flow in an inv
cid, two-dimensional vortex patch. The results are compared with high-resolution fini
difference solutions [8] and the convergence is studied by varying the numerical parame
of the problem. Next, we consider the three-dimensional simulation of an initially spheri
suspension of solid particles falling due to gravity in a viscous fluid. This case demonstrz
the adaptivity of the algorithm and the solution is compared qualitatively with a drop fallir
in a viscous fluid [34, 48, 47].

The remaining part of the paper is organised as follows: Section 2 outlines the goverr
equations, and Section 3 the numerical method. The results are presented in Section 4
summarised in Section 5.

2. GOVERNING EQUATIONS

We consider simulations of three-dimensional particle-laden flows. In our treatment
employ the following approximations: (i) the particles consist of rigid spheres of the sau
diameter, (ii) the particle forces are limited to fluid drag and gravity forces, (iii) particl
collision is not taken into account, and (iv) the flow is periodic and incompressible. Wi
these assumptions, the equations governing the motion of the solid particles and the
elements are described as follows.

2.1. Fluid Motion

The governing equation for an incompressible fluid with constant kinematic viscojity |
may be given in terms of the vorticity transport equation
D
F‘: — (- VIV+F V2 1+ o, @)
wherev is the velocityw = V x v the fluid vorticity, andD /Dt = 9/dt 4+ v- V the ma-
terial derivative. The vorticity source ter(p) is expressed as

1

¢=—-V xf, (2
0

wheref is the body force per unit volume, apdhe fluid density.
The fluid velocity can be recovered from the vorticity through a Poisson equation w
the aid of a solenoidal vector potentidl, (such thav = V x W),

VP = —w. 3

In this study we conduct simulations in a domain periodic in all three space dimensic
with lengthL so that®(x) = ¥ (x + L).
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2.2. Solid Particle Motion

In the following the solid particle quantities are denoted by the subsprighile quan-
tities pertaining to the fluid do not have a subscript.

The solid particles are considered as rigid spheres with dian@feand density(op).
Their motion is described by their instantaneous positiay) and velocity(u,) and is
governed by Newton’s law,

dxp
— =u
d¢ ¥
(4)
dup
ppVO|pE = fp,
wherep =1, ..., Np, vol, = wd3/6 is the volume of the particle, arig is the total force

acting on the particle. In the present paper we have limited the number of forces to incli
viscous drag forcg; and gravityf ;. However, the inclusion of additional forces (e.g., addec
mass, pressure forces) is straightforward. Thus,

fo=fg+fg (5)

The viscous drag force induced by the flow on the solid particles is described as [37]

1
fa = 50Ca’y d2(VXp) — Up)V(Xp) — Upl, ©

wherev(x,) is the fluid velocity at the position of the particlgy is the drag coefficient,

R (1+0.15R§%),  Re, < 1000
Cq = (7
0.44, Re, > 100Q
and Reg is the particle Reynolds number,
- d
Re, = M. (8)
Vv
The particles are furthermore subjected to a gravity force
fq =voly(pp — 0)g, 9)

whereg is the acceleration due to gravity.

The source term in Eq. (2) models the creation of vorticity from the solid surfaces of t
particles. This vorticity source is in general proportional to the pressure gradient and
tangential acceleration of the surface of the particle and accounted for here by a model
force; thusf = f4. The hydrostatic pressure forcesvol,pg) are accounted for without
directly producing any vorticity.
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3. VORTEX PARTICLE METHOD

3.1. Fluid Motion

We discretise the governing Navier—Stokes equationsinform (Eqg. (1)) using a vortex
particle method. The vorticity field is discretised usiNd-agrangian (vortex) particles,

N

w() =Y aine(X—X), (10)
i=1

o = V0|iw(Xi), (11)

where(x;) and («;) denote the location and strength of the vortex particle, respective
The vorticity field of each particle is mollified over a support of sizZiey a smooth function
N (X). Typical examples of such functions are radially symmetric Gaussians usually use
pure Lagrangian methods or tensorial products of polynomials or splines in hybrid partic
mesh methods. The order of the approximation is proportional to the number of mome
shared by the smoothing function and the Dirac delta-function (cf. [3, 22]).

The vortex particles are advected using a fractional two-step algorithm. During the fi
inviscid step, the particle locations are modified to account for convection while the parti
strengths are changed to account for vortex stretching,

dx;

G = VoD, (12)

dai

o = Vol (W) - V)vex), (13)
wherei =1,..., N. In the present computations, we use the conservative {fom

(w V).

The inviscid step is followed by a second viscous step accounting for the effects
diffusion and vorticity generation in the fluid elements induced by the solid particles. Duri
this step the vortex particles are considered “frozen” in their locations while their stren
is modified to account for the effects of diffusion

dXi
— =0, 14
@ (14)
do;
S = Vo 0VE06) + ¢ (x), (15)
andi =1, ..., N.Using this Lagrangian algorithm the vortex elements automatically ada

to areas of the flow field where vorticity is being generated by the motion of the so
particles.

3.2. Diffusion

Particle methods are well suited to the discretisation of problems described by aninte
operator. The integral operator can be discretised using as quadrature points the loc
of the particles which are not required to occupy regular grid locations. In order to han
the diffusion operator in the context of particle methods the key idea is then to repl:
the Laplacian with an equivalent integral operator. The links between integral and dif
sion operators have long been exploited in the field of kinetic equations, but in generz
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the other direction, namely, to derive a diffusion approximation of integral operators tt
model particle collisions [40]. The Particle Strength Exchange (PSE) method introduc
by Degond and Mas-Gallic [17] replaces the Laplacian by an integral operator as

VZw(x) & Viw(x) = o2 / [w(y) = W] (y — ) dy. (16a)

The accuracy of this approximation is related to the moment propertigs Bbr a method
of orderm the kernels, (x) = o0 =3¢ (x/o) is themth order diffusion kernel satisfying the
moment conditions

///x";“(x)dV:Z, fa=26i€{l,23,1<|al<m+1,

///x‘lg(x) dv =0, fa£eg ie€fl 23}, (16b)

///|x|m+2|c(x)|dv < 0.

Here o = (o1, a2, a3) € N3, x@ = Hle X', la| = Z?:l aj, ande are the unit vectors
(1,0,0), (0,1, 0), and(0, O, 1), respectively; cf. [17].
The second-order kernel proposed by Cottet [14] is used (Fig. 1):

(17)

When the integral operator is discretised we obtain an algorithm for the update of
particle (vortex) strengths as

doy
% = %ZCU(Xi — Xj)(voliatj — voljaxp). (18)
j
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FIG. 1. Second-order diffusion kernel used in the particle strength exchange scheme.
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3.3. Vortex-in-Cell

The computationally intensive part of particle (vortex) methods is the calculation of t
velocity field, as each particle induces a velocity field on all other particles. The classi
cost of the method scales @5 N?) but it can be reduced t®(N) or O(N log N) using
fast multipole methods [9] or particle—-mesh techniques [23]. Particle—mesh techniques
in general faster as they take advantage of the availability of fast Fourier transforms
the solution of Poisson’s equation. They have the drawback that they require the pres
of a grid for the evaluation of the velocity. However, it should be emphasized that parti
methods require in general a periodic projection of the flow field carried by the particl
onto a set of overlapping particles. The projection onto a regular mesh uses a high-o
interpolation formula [15] that would be difficult to construct for mesh-free particle methoc
cf. [26, 31]. The accurate interpolation of particle—grid quantities is a subject of ongoi
investigation [42] and is further addressed in Section 3.5 of this paper.

The present study employs the particle—mesh technique Wbipox Ny x N,) grid
points with an equidistant mesh spacirnj. (At each time step the vorticity field is con-
structed on the mesh from the particle (vortex) strength using high-order assignment fi
tions (see Section 3.4). The vector Poisson equation (Eq. (3)) is discretised using sec
order finite differences and solved subject to periodic boundary conditions using fast Fou
transforms [43]. The velocity field and the vorticity stretching are computed on the me
using fourth-order finite differences and interpolated back onto the vortex particles to upc
their position and strength. Second-order finite differences were also tested but were fc
to produce a less solenoidal vorticity field than the fourth-order scheme.

3.4. Particle-Mesh Interpolation

A key aspect of particle—-mesh techniques is the accurate and efficient assignmer
particle values to the mesh and the interpolation of the field quantities from the mesh to
particles. Only these particle field variations with wavelengths longer than those descri
by the mesh-spacing can be accurately represented by the respective mesh values. The
grid size produces a loss of information which may be viewed as an aliasing error [15].

The assignment of the mesh vorticity from the particle strength and the interpolation
the particle values from the mesh use the moment-conservipgdileme proposed by
Monaghan [35] for one-dimensional smooth particle hydrodynamics and later appl
to two- and three-dimensional vortex methods by Cottet and Koumoutsakos [15]. Th
moment-conserving interpolation kernels reduce the effects of aliasing without being |
practical and they have compact support, that very closely approximates the ideal low-|
filter sinc ). The moment-conserving B-splinés possesses both properties and have
been shown to introduce minimal numerical dissipation in simulations using vortex me
ods[15]. They are continuous up to the- 1 derivative and therefore their Fourier transform
decays as-k™". Their effectiveness in eliminating the effect of aliasing as a function c
the wave numbek and the grid wave numbéy = 27 /Ax is expressed g4 — mky/k|™"
[23]. High-order interpolation kernels can be constructed efficiently using a recursive f
mulation as described by Sagrestal.[42]. The interpolation formula in three dimensions
consists of a tensorial product of its one-dimensional counterparts and it can be express

r,-=Zriw<xjgxi)w<yj;“>w(zjh_z‘), (19)
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W(x)

FIG. 2. M, interpolation kernel for assignment and interpolation.

whereW(x) is the M, interpolation kernel

1-3xPP+3Ix;3,  IxI <1,
W) =< 22— [xD2L—|x]), 1<Ix| <2 (20)
0, |X] > 2.

cf. Fig. 2, andT'j, x;) and(I'j, x;) are the mesh and particle values, respectively (and vic
versa). Thus, in three dimensions a particle will assign values to the nearest 64 grid poi
and conversely interpolation involves the 64 nearest grid points.

The M, scheme conserves the first three moments of the interpolant, in particular

vorticity momentg(€2;).
Q= / / / waV,

91:%///xxwdv, (21)
ﬂzzé///xx(xxw)dv.

From a computational point of view, the interpolation can be implemented efficiently fi
both vector and parallel computer architectures, since the field value at each particle ca
interpolated independently. This is generally not true for the assignment procedure wt
grid points will receive contributions from more than one patrticle. In the present stu
with approximately one vortex particle per grid point, sorting the vortex particles in a ce
index list and adding the particle contributions from the particles in the surrouidirg

4 x 4) cells results in short and inefficient loops. Instead, during the re-meshing proced
(see below) the vortex particles are numbered according to their positions on the mes
increments larger than 4 (for thejdcheme) in each spatial direction, cf. Fig. 3. This secure
that vortex particles stored consecutively in memory will assign their strength to differe
subsets ofthe mesh, hence allowing vectorisation. The assignment procedure is subseqt
split into pieces of vectorisable loops. For vector-parallel execution, the vectorised looj
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FIG. 3. During the re-meshing the new vortex particles are created on the mesh in increments larger than
in each spatial direction to allow vectorisation of the assignment procedure. The sketch shows a two-dimens
example of the particle mesh and the numbering of the first 11 particles after re-meshing.

furthermore split into pieces, an inner and outer loop, which allows parallelisation of t
outer and vectorisation of the inner loop, respectively.

3.5. Vortex Particle Re-meshing

Lagrangian numerical methods enjoy automatic adaptivity and the elimination of the ne
to discretise explicitly the non-linear convection term but at the same time it is necessar
address the “grid” distortion induced by the flow map and to handle efficiently the resoluti
of viscous effects on the particle (vortex) locations. This can be handled by a re-meshin
the flow field. During re-meshing the particle strength is assigned to the mesh accordin
Eq. (19) and the (vortex) particles are replaced by a new set of particles released from the
points where the mesh vorticity is non-negligible (i.e., wherg/ |wmax > €, ande <« 1).
The strength of the new patrticles is calculated using the formulas used for particle-m
interpolation (Eq. (19)); see Fig. 2. Thus, the present re-meshing scheme is conserv:
(d29/dt = 0) and avoids spurious fluid forcing, since the force and torque acting on t
fluid are proportional to the rate-of-change$f and€2,, respectively. Specifically, for
unbounded flows the fluid fora@) is given by [41]

dQ2;
e
Re-meshing may be viewed as a method for introducing sub-grid scaling in vortex me
odsto eliminate the spurious structures that are introduced by the (vortex) particle distort
In that sense re-meshing may be viewed as an effective way of introducing sub-grid s
modeling to vortex methods and could serve as an alternative approach to the methc
hairpin removal [11, 19] and the use of Lagrangian anisotropic sub-grid scale models |
28]. The need for re-meshing in vortex particle methods was demonstrated by Knio
Ghoniem [26] and Koumoutsakos [27] for studies of two- and three-dimensional invisc
flow problems. Re-meshing is also a key aspect of the simulation of diffusion using 1
method of particle strength exchange. As the support of the vorticity increases by diffus
the PSE scheme requires the presence of “ghost” particles to effectuate this increase ¢
vorticity support.

F= (22)
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Additionally, in the case of particle laden flow re-meshing is utilized to ensure the ge
eration of vortex particles in the regions of the flow where the rotational part of the forci
from the solid particle is non-zero and fluid vorticity is created according to Eq. (2). Tt
frequency of re-meshing can be determined by monitoring the particle overlap and ac
when a certain threshold is exceeded. However for the flows under consideration diagl
tics such as linear and angular impulse did not differ by more than 5% from cases wh
re-meshing was employed after every time step. Thus, re-meshing is currently performe
the end of each time step to allow efficient identification of neighbouring (vortex) particl
during the diffusion procedure for the particle strength exchange scheme and to secur
optimal support of the vorticity field.

3.6. Solid Particle Motion

The forces on the solid particles given by Egs. (6)—(9) are computed by interpolating
fluid velocity obtained on the mesh onto the solid particles using thedleme (Eg. (19))

V(Xp) = vaW(xp — Xm). (23)

The position and velocity are updated according to Eq. (4) using the second-order leap
scheme

1 _1 fll
Up 2 =Up 2 48t—L2 (24)
ppVolp
1
x’r‘fl =Xp+ stup 2, (25)

and where the superscri@t) indicates the time step.
The velocity of the solid particles at time stap required in the calculation df"r') (cf.
Eq. (6)) is approximated by the velocity @t — %), or computed by iteration

1 n+i _1
u’g,%é(u?, > 4 up 2), (26)

Whereﬁrff% is the most recent value af, at time(n + %) computed by iteration of Egs. (6),
(26), and (24), respectively. The leapfrog scheme offers in the present study a reasor
compromise between accuracy, storage requirements, and stability. Furthermore, the t
symmetry secures conservation of energy [23].

3.7. Two-Way Coupling

The two-way coupling is achieved in conjunction with the vortex particle re-meshir
and the computation of diffusion. The force imparted by the solid particles onto the flL
elements is interpolated onto the mesh and is differentiated to obtain the vorticity sou
term. The algorithm proceeds with the following steps. After the calculation of the invisc
step (Egs. (12) and (13)):

1. Assign the mesh vorticity from thi vortex particles using Eq. (19)

1 N
Wm) = T3> W (xm = X)).
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2. Assign the mesh source term from the fluid forces acting omNthsolid particles
NP
fxm) = — > FgW(Xm — Xp).
p

3. Compute diffusion on the mesh using the particle strength exchange (Eqg. (18)) wt
(h) is the smoothing length scale).

4. Compute the vorticity source terfW" x (f/p)) and update the mesh vorticity.

5. “Re-initialize” vortex particles at the mesh points where the vorticity is non-negligibls

By applying the same interpolation kernel for the interpolation of the fluid velocity ont
the solid particles and for the assignment of the forces on the solid particles onto
fluid elements, the conservation of total kinetic energy balance of the system is enforc
cf. Sundaram and Collins [44]. Also, since the interpolation kernel sati@gW(x —

Xg) = 1, the exchange of momentum between the two phases is conservative [44].
conservation of momentum is demonstrated in the three-dimensional test case presen
Section 4.2.

3.8. Algorithm Summary

To summarise, the present three-dimensional particle (vortex) algorithm for partic
laden flows with two-way coupling proceeds as follows. Given the initial vorticity fiels
and volume of the vortex particles, we calculate the initial particle strength according
a? = voljw(x?).

1. Inviscid step:
(i) Assign the mesh vorticity from the vortex particles:

1 N
W Km) = o5 > i W(xm — X))

(i) Solve the Poisson equation for the vector poterf¥af® = —w).

(iii) Compute the fluid velocity from the vector potential= V" x ¥).

(iv) Compute the vorticity stretching teraW" - (w : v)).

(v) Compute the forces on the solid particles in the first step of the Runge—Kutta cyc
a. Interpolate the fluid velocity to the position of the solid particles:

V(Xp) = Z:vmW(xp — Xm).

b. Compute the fluid forces on the solid particles using Egs. (6)—(9).
c. Update the velocity and position of the solid particles according to Eqgs. (2
and (25).
d. Enforce periodic boundary conditions for the solid particles.
(vi) Interpolate the velocity to the vortex particles:

Vi = vaW(xm —Xj).
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(vii) Interpolate the stretching to the vortex particles:

(@i - V)V = h3ZVh (W VYW Xm — X)).

m

(viil) Update the position and strength of the vortex particles (Egs. (12) and (13)).
(ix) Enforce periodic boundary conditions for the vortex particles.
2. Viscous step (compute the influence from the diffusion and the source term): ¢
Section 3.7.
3. Returnto Step 1.

The inviscid step is solved using low-storage, third-order Runge—Kutta time integrati
[50]; thus Step (1) is repeated accordingly. Step (v) is only invoked during the first step
the Runge—Kutta cycle.

4. RESULTS

Inthe following, we presentvalidation studies of particle laden flows in a two-dimension
inviscid vortex patch for which one-dimensional high resolution finite difference solutic
exists [8].

Next, we consider the three-dimensional flow that develops from an initially spheric
suspension of particles falling due to gravity in an quiescent fluid. The phenomena obsel
display a remarkable resemblance to that of a drop falling in a viscous fluid; cf. Thoms
and Newall [48].

4.1. Validation Study: Gaussian Patch

The dynamic behaviour of a suspension of particles in a two-dimensional inviscid vort
patch is simulated, applying the present method in a “two-dimensional” mode by using f
grid points in the direction normal to the plane of the patch and neglecting the vorticit
stretching term. The influence of the grid resolutidty), the number of particlesNp),
and the time stepst) is studied by performing a systematic refinement of these paramete
The different cases are listed in Table 1, whiskds the total number of solid particles used

TABLE 1
Numerical Parameters Used in the Study of a Suspension
in a Two-Dimensional Vortex Patch

Case Np Ng st
1 10 128x 128 0.1
2 10 128x 128 0.1
3 1C¢° 128x 128 0.1
4 10 64 x 64 0.1
5 10 64 x 64 0.1
6 10 64 x 64 0.2
7 10 256x 256 0.1

Note. N, is the total number of particles used in the three-dimensional method
and corresponds tbl,/4 for the two-dimensional casél, is the number of
grid points, andt the non-dimensional time step.
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and hence correspondsltp /4 particles in two dimensions. The results are compared wit
the two-dimensional finite-difference and vortex method results of Chen and Marshall |

Following [8] the initial vorticity (w(r)) and concentratioric(r)) fields are truncated
Gaussians; i.e@(r) = woexp(—r2/r2), and c(r) = coexp(—r?/rg) for r < 2.5ry and
zero elsewhere, wheng is the initial radius of the vortex patch. The results are non
dimensionalised using, and the total circulatiolf = wrr2(1 — e @9,

The initial vorticity field is discretised using vortex particles on the VIC mesh. The initie
position of the solid particles is given by a two-dimensional normal distribution with ze
mean and varianag /2, and a uniform random distribution in the third direction. The initial
particle velocity equals the fluid velocity.

The flow is solved subject to a periodic boundary condition in all spatial direction and
avoid significant influence from the mirror vortex patches the size of the computational
main(L) is chosen sufficiently large (hete= 20r(). The radial vorticity and concentration
profiles are averaged in the circumferential direction using simple binning.

The vorticity and concentration profiles obtained with the present method for a me
resolution of 256 and using 16 solid particles are compared in Fig. 4 with the
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FIG. 4. \Vorticity (a) and concentration (b) profiles as function of radius as predicted by the present mett
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FIG.5. \Vorticity (a) and concentration (b) profile as function of radius for different number of solid particles
Present simulations: —N, = 10° (Case 3)———:N, = 10* (Case 1); ---N, = 1(° (Case 2). Finite-difference
solution of Chen and Marshall [8]: -.

finite-difference solution of Chen and Marshall [8]. Good agreement is observed duri
the entire simulation (up tb= 140).

Next, we study the dependence of the number of solid parti¢lgs on the solution
by varying the number of particles two orders of magnitublg,= 10°, 104, and 16,
corresponding to 250, 2500, and 25,000 solid particles in two dimensions. The vortic
profiles shownin Fig. 5a are in close agreement with the finite-difference solution (root me
square errors of 1.34%, 0.86%, and 0.75%, respectively) except the case dgagitles,
which underestimates the vorticity in the central region of the patch. The concentrat
profiles (Fig. 5b) exhibit a larger variation than observed in the vorticity but converge to t
finite-difference solution as the number of particles is increased (root mean square er
of 6.1%, 2.2%, and 2.8%, respectively). The noise mainly displayed in the concentrat
profiles (Fig. 5b) is caused by the random initial position of the particles and the invisc
nature of the problem.

The influence of the time step size is demonstrated in Fig. 6 for simulations usirfg a |
mesh and 19particles and for non-dimensional time steps of 0.1 and 0.2. For the paramet
investigated a non-dimensional time step of 0.1 appears to be sufficient.
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FIG. 6. \Vorticity (a) and concentration (b) profile as function of radius for different time step size using
64? mesh and 1Dparticles. Present simulations: -st:= 0.1 (Case 4)———:5t = 0.2 (Case 6). Finite-difference
solution of Chen and Marshall [8]: ---.

Finally, the influence of the mesh resolution is studied usirng 528, and 256 grid
points, a time step of 0.1, and 4 6olid particles, respectively. Good agreement is agai
observed (Fig. 7) for all but the coarsest mesh, which exhibits some deviations in the vorti
field in the centre of the patch. Thus we conclude that in the parameter range studiec
present method produces results in close agreement with those of the high-resolution fi
difference solutions presented in [8].

4.2. Three-Dimensional FallingBlob’

In this section we consider the three-dimensional problem of a suspension of parti
initially contained within a spherical boundary and falling due to gravity. The fluid i
initially in a quiescent state, without vortex particles, and the test serves to validate
adaptive creation of vortex particles according to the vorticity source term.

The apparent similarity of this problem to that of a viscous drop falling in a fluid he
recently been noted by Batchelor and Nitsche [2] in a study of rising bubbles in fluidiz
beds, and by the same authors [36] for a falling “blob” of particles, where they refer tc
“blob” as “a finite volume of a dispersion of particles in a liquid.” At low particle Reynold:
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FIG. 7. \orticity (a) and concentration (b) profile for different mesh resolutions. Present simulations: —
Ny = 64? (Case 4); ———N, = 12& (Case 1); ---N, = 256 (Case 7). Finite-difference solution of Chen and
Marshall [8]:- - -.

numbers(Re, < 1) they assumed that the particles interact as Stokelets and included
additional short-range repulsive force to regularise the problem. They found that the b
descends faster than a drop of similar density and viscosity and that particles are she
the wake of the blob by hydrodynamic dispersion. The speed of thgbjakas compared
with the Hadamard and Rybaagki (H-R) formula

_(p=pgD? ptpu

U —_
120 p+3n

(27)

whereu = pv is the dynamic viscosity of the fluidy is the acceleration due to gravity, and
D, iz, andp are the diameter, viscosity, and density of the drop, respectively.

Similar fluid-like behaviour of a suspension has been noted by Powell and Mason [:
in experiments with particle dispersions in laminar shear flows and by Poletto and Jos
[38] in studies of settling spheres in a suspension.

Also, recently Sundaram and Collins [45] used similar arguments in their comparis
of particulate flows with pure fluids at an elevated density and viscosity in a study
particle-laden isotropic turbulent flows.
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TABLE 2
Numerical Parameters Used in the Study of a Three-Dimensional “Blob”
Falling Due to Gravity

Case Np Ng w/ o/p Re Fr Up/U
1 10 64 x 64 x 64 2.0 2.0 10 0.26 0
2 10 64 x 64 x 64 35.0 1.6 180 1.79 0
3 1¢ 64 x 64x 128 35.0 1.6 180 1.79 2.3

Note. N, is the number of solid particled\ is the number of grid pointg,/p is the
viscosity ratio,o/p is the density ratioy,/U is the initial velocity, and Re and Fr are the
Reynolds and Froude numbers, respectively.

Other numerical studies include the early work of Childress and Peyret [10] on bioconv
tion using an Eulerian—-Lagrangian formulation and the recent study of three-dimensic
particle thermals by Li [29].

In the following, we shall compare the speed of a blob with the H-R formula (Eq. (27
assuming that the density of the blob is given in terms of the (initial) volume fragfipas
p = pp + (1 — ¢)p and that the viscosity is given by the expression due to Lundgren [3(
valid for high-volume fractions,

1

N

"
Generally, the parameters governing the flow are the viscosity(fatio), the density ratio
(p/p), the blob Reynolds number Re pV D/, and the Froude number ErV/,/gD,
whereV is a characteristic velocity. In the present study we shall use the H-R veloc
as the characteristic velocity = U), reducing the number of parameters to the ratio o
viscosity /i, the ratio of density /p, the initial velocityug/U, and the Froude number
Fr= U/./gD. The results are presented in non-dimensional form based on the diamete
the blob and the H-R velocity.

Three cases are studied. The first case involves a drop falling from rest at mode

Reynolds and Froude numbers (R€l0 and Fr= 0.26), allowing comparison of the

1.0
/"_/VV/

0.8

0.6

04 /

02

0.0

00 02 04 06 08 10 12 14 16 18 20

tU/D

FIG. 8. Speed of the centre of gravity of the suspension (Case 1).
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FIG. 9. Cross section of the blob at different non-dimensional times. fdpD = 0.050; bottomtU /D =
1.325 (Case 1).

terminal velocity with the H-R formula. The latter two cases involve drops falling at high
Reynolds numbers (Re 180 and 230) matching the viscosity and density ratios at paran
eters similar to those used by Mitts [34] in studies of falling drops in miscible fluids.

4.2.1. Case 1. Thefirst simulation involves a drop falling from rest at Reynolds numbe
Re= 10, and Froude number of Er 0.26. At this relatively low Reynolds number we

FIG. 10. Iso-surface of vorticity|w|/|wmaxl = 0.1) and one-tenth of the solid particlestat/D = 1.325
(Case 1).
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FIG. 11. Total force on the particular and fluid phasex — x —: total fluid force;— + — + —: total solid
particle force;— * — % —: total force on system.

expect that the terminal velocity of the blob can be compared with the H-R velocity. T
viscosity and density ratios agg/ix = p/p = 2. The drop is modelled by placing 2€olid
particles within a spherical boundary of diamebeaind the size of the computational domain
is (10D x 10D x 10D) discretised using 64grid points. The parameters are summarisec
in Table 2.

The time history of the non-dimensional speed of the centre of gravity of the blob
shown in Fig. 8. The estimated limiting value wfU is 0.89, thus in fair agreement with
the H-R formula considering the approximations involved. A cross section of the bl
attU/D = 0.050 andtU /D = 1.325 is shown in Fig. 9. At this finite Reynolds number,
the blob deforms during the descent, but remains intact in the time span studied.
corresponding vorticity field and one-half of the solid particles are shown in Fig. 10
tU/D = 1.325. The blob has created a vortex ring that propagates with the blob.

The conservation of momentum between the phases is demonstrated by considerin
time history of the total vertical force acting on the solid partigles= > fq + fg) and

0.25

wuU
\

0.05

0.00
0 10 20 30 40 50 60 70 80

tU/D

FIG. 12. Speed of the centre of gravity of the suspension (Case 2).
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FIG. 13. Cross section of the blob at different non-dimensional tigtely' D). (a) 0.00, (b) 7.18, (c) 10.77,
(d) 14.36, (e) 17.94, and (f) 21.53.

the total fluid forces(— > fq) normalised by the total gravitational for¢éy = > fg)

on the solid particles as shown in Fig. 11. The total force on the solid particles is evalua
from the rate of change of the particle momentundasi(mvp)/dt, and the fluid force

is computed from Eqg. (22). The total force on the solid particles decreases monotonic

FIG. 14. Picture of experimental results from Mitts [34].
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FIG. 15. Sketch of unstable vortex ring from experiments by Thomson and Newall [48].

59
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FIG. 16. \orticity iso-surfaces (redw|/|wmax] = 0.12) and solid particles (2 of total) at different non-
dimensional time (Case 2). From the tidp/D = 3.59, 35.9,53.8, 71.8, and 171.5.
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FIG. 16—Continued

towards zero (as drag is being balanced by gravity) and the fluid force increases corresp
ingly. For the duration of the simulation the momentum is clearly conserved.

4.2.2. Case 2. The second case involves a highly viscous dfapu = 35) falling at
a Reynolds number of 180 and Froude number of 1.79, respectively. The density rati
p/p = 1.6. The parameter values are similar to the values used in the experiments of visc
drops falling in a miscible fluid by Mitts [34]. In these experiments the drops were forme
above the bath and allowed to fall some distance before penetrating the surface of the |
Thus the simulations differ from the experiments in terms of initial conditions.

The speed of the centre of gravity of the blob computed with the present method is she
inFig. 12. Itis observed that the blob accelerates from rest until it reaches a maximum sg
of approximately one-fifth of the H-R speed, followed by a deceleration to a mean va
of approximatelyli5 of the H-R value. The cause of the deceleration can be inferred fro
snapshots of the cross section of the blob as shown in Fig. 13. As the blob descends i
forms from the initial spherical shape into an oblate spheroid due to the resistance exe
by the fluid. An intrusion develops at the rear stagnation point and the blob subseque
forms into a spherical cap shape as shown in Fig. 13c. As the blob expands the drag f
increases, hence retarding the blob. At later times, the blob transforms into an unstable
Bulges form along the ring, and these form new blobs that descend faster than the main |
After traveling some distance these blobs again form new rings in a cascade-like fash
Similar observations were made in the experiments by Mitts [34] (cf. Fig. 14) and sketct
in the work of Thomson and Newall [48] (Fig. 15). The solid particles and the iso-surfa
of vorticity (Jo|/|wmax] = 0.08) are shown in Fig. 16. The particles are indicated with
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FIG. 17. \orticity iso-surfaces (red) and the vortex particles (Case 2). TdpD = 3.59; bottom:tU/D =
538.
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FIG. 18. Speed of the centre of gravity of the suspension (Case 3).

white spheres and partially covered by the transparent iso-surface shown in red. The vc
particle support is shown in Fig. 17, where the vortex elements are plotted as spheres w
diameter proportional to their strength. The figure clearly demonstrates the adaptivity of
method.

4.2.3. Case 3. This last test case involves a blob with physical properties identical t
those in the previous case (Case 2), but for this study the blob is allowed to fall some diste
with a constant velocity, creating fluid vorticity, before it is “released” into the flow. Thit

FIG. 19. Cross section of the blob at different non-dimensional tittel’ D) (Case 3). (a) 0.03, (b) 0.75,
(c) 1.47, (d) 2.91, (e) 7.21, and (f) 21.57.
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FIG. 20. \Vorticity iso-surfaces (red) and solid particles/21of total) at different non-dimensional times
(Case 3.) From the topt /D = 3.59, 7.18, 10.77, 14.36, 17.94, and 21.53.
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FIG. 21. Vorticity iso-surfaces (red) and the vortex particles (Case 8)aD = 21.53.

effective one-way coupling of the phases is similar to the model proposed by Thomson
Newall [48] for the formation of a vortex ring from a drop falling into a bath.

The time history of the speed of the drop is shown in Fig. 18. As the drop is releasec
tU/D = 0.72 the speed decreases from the initial value of 2.3 to a value of 0.5 followed
atemporary increase to approximately 0.75, after which the speed decreases monotoni
The initial deceleration is attributed to an expansion of the blob as shown in Figs. 19a-1
The blob transforms into a ring ) /D ~ 8, but with a loss of particles shed in the wake;
cf. Fig. 19f. The increase in speed of the centre of gravitWatD ~ 2.5 is due to a strong
reorganisation of the particles, cf. Figs. 19d, 19e. Similar observations were noted in a st
of vortex rings by Mansfiel@t al.[31].

The iso-surface of the vorticitfiw|/|omax] = 0.02) and the solid particles are shown
in Fig. 20. The initial “rigid” drop introduces an intense wake which remains for som
time contrary to the previous case where the vorticity more closely follows the drop. T
corresponding vortex particles supporting the vorticity field are shown in Fig. 21.

5. CONCLUSIONS

Athree-dimensional vortex particle method has been developed for the study of two-ph
particulate flows with two-way coupling. The method employs a Lagrangian procedure
motion of the solid particles and utilises well established formulas for the hydrodynan
forces acting on solid particles. The fluid flow is solved using an adaptive particle meth
based on an enhanced vortex-in-cell algorithm. The individual fluid elements carryi
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vorticity evolve subject to convection, stretching, and diffusion, and change due to the \
ticity source term determined from the rotational part of the forcing induced by the so
particles. An adequate particle support for this source term is secured by a re-meshing ¢
egy which combines the forcing term with projection of the Lagrangian fluid elements or
aregular grid. The projection uses high-order, moment-conserving spline formulas, he
minimising spurious forcing of the flow. The re-meshing procedure allows the adaptive c
ation of vortex elements in the regions of the flow where the local vorticity is non-negligibl

The Lagrangian procedure adopted for the fluid flow avoids the discretisation of 1
non-linear term making this methods an interesting alternative to traditional grid bas
methods.

The method is validated by the simulation of a suspension of solid particles embed
in an inviscid, two-dimensional patch of vorticity. The results are found to be in goc
agreement with previous benchmark calculations. The features of the proposed me
are further investigated through the study of an initially spherical suspension of partic
falling due to gravity in a quiescent viscous fluid. At low Reynolds numbers the suspens
forms a steady vortex ring travelling with the suspension. The speed of the ring is fol
in resonable agreement with the classical Hadamard and Ryskizyélocity for a drop
falling in a viscous fluid.

For higher Reynolds and Froude numbers the vortex ring is unstable, forming bul
along its circumference. As these bulges descend new vortex rings are created in a cas
like fashion and in qualitative agreement with experimental observations of drops falli
in a viscous fluid, cf. Thompson [47]. The instability was found to depend on the initi
vorticity field, and further studies are under way to quantify this dependence.
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