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This paper presents a three-dimensional viscous vortex method for the simulation
of particulate flows with two-way coupling. The flow is computed using Lagrangian
vortex elements advected with the local velocity, while their strength is modified to
account for viscous diffusion, vortex stretching, and generating vorticity induced by
the particles. The solid particles move according to viscous drag and gravity, creating
vorticity, which is discretised using vortex elements. This method adaptively tracks
the evolution of the vorticity field and the generation of new computational elements
to account for the vorticity source term. A key aspect of the present scheme is the re-
meshing of the computational elements to adaptively accommodate the production
of vorticity induced by the solid particles, and to ensure sufficient support for the
proper resolution of the diffusion equation. High-order moment-conserving formulas
are implemented to maintain the adaptive character of the method while they remain
local to minimize the computational cost. These formulas are also implemented in
the particle–mesh interpolation of the field and particle quantities in the context of
a Vortex-in-Cell algorithm. The method is validated against the results of a related
finite-difference study for an axisymmetric swirling flow with particles. The method
is then applied to the study of a three-dimensional particle blob falling under the effect
of gravity. It is shown that drastically different behaviours are found depending on
the presence of an initial vorticity field. c© 2001 Academic Press

Key Words:vortex methods; particle-laden flows; Lagrangian method.

1. INTRODUCTION

The frequent occurrence of particle-laden flows in nature and industry has made this field
an active area of research in the last decades. The physical problems range from environ-
mental particulate pollution problems [24] to particulate flows in fluidised bed reactors,
particle generation and reaction processes, and solids transport and separation [16].
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Traditionally, aone-waycoupling between the phases has been employed fordilutesys-
tems, but the preferential accumulation of solid particles in regions of high fluid strain
rate and low vorticity [18] can result in high values of the local particle concentration,
indicating the presence of a significant (local) coupling of the two phases. Thus, even
in nominally dilute systems, it is desirable that the numerical method allows atwo-way
transfer of momentum between the particulate and fluid phases. In simulations of partic-
ulate flows with two-way coupling the solid particles are advanced by solving Newton’s
law of motion with forces that account for the hydrodynamic interaction with the flow
field (e.g., Stokes drag, buoyancy, added mass, etc.). At the same time, their motion im-
parts vorticity onto the neighbouring fluid elements. The proper generation of vorticity
(and accordingly the completetwo-waycoupling) for each solid particle would involve
the solution of the Navier–Stokes equation around each particle [21], which for very
large number of particles is presently a computationally intractable task. Alternatively,
the generation of vorticity induced by the solid particles can be modelled to enforce mo-
mentum conservation with the model forces induced on the solid particles by the fluid
flow.

A key aspect of the simulation of particle-laden flows is the interpolation of flow quantities
between the solid particles and the computational elements. These computational elements
may be Eulerian as in finite-difference and spectral element methods [20] or Lagrangian, as
the vortex elements used in the present study. The governing flow equations are solved for
these elements by taking into account the particle forcing in terms of vorticity generation.
In turn, fluid velocity is interpolated from the computational elements onto the solid particles
to determine the hydrodynamic forces.

Simulations of particle-laden flows using particle (vortex) methods offer an interesting
alternative to grid-based methods due to their inherent adaptivity and the minimal amount
of numerical dissipation associated with the discretisation of the non-linear convection
term. Efficient computations are possible by using fast multipole algorithms for flows in
unbounded domains and hybrid algorithms (such as particle–mesh) for unbounded and peri-
odic domains. However, issues such as the distortion of the computational particles and the
interpolation of particle quantities onto the Lagrangian computational elements has not been
extensively addressed in the past; in particular, in the context of three-dimensional simula-
tions. In this paper it is shown that these issues can be accurately resolved by implementing
effective re-meshing formulas.

We consider flows in periodic domains and the present work extends the Vortex-in-Cell
(VIC) algorithm originally proposed for the study of plasma by Birdsall and Fuss [4], and
later applied to fluid flow problems by Christiansen [12] to the study of three-dimensional,
two-phase particulate viscous flows with a two-way coupling of the phases.

A key aspect for the convergence of vortex methods is the enforcement of the particle
overlap throughout the evolution of the flow field. We ensure the accuracy of the method
and the accurate treatment of the two-way coupling by applying a re-meshing strategy of
the vortex elements, allowing these to be created where the vorticity source term is non-
negligible. The re-meshing also secures a proper discretisation of the diffusion which is
computed using the Particle Strength Exchange (PSE) scheme by Degond and Mas-Gallic
[17]. The forces acting on the solid particles include viscous drag, but implementation of
additional forces (e.g., added mass and lift forces) [33] is straightforward.

Particle (vortex) methods have been applied to a number of studies of particulate flows
including two-dimensional studies of Rayleigh–Taylor instability [1, 25, 49, 51, 52], mixing
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layers [7, 8, 32], and of wakes [46]. Three-dimensional simulations include the work of
Brecht and Ferrante [5, 6] for studies of inviscid buoyant bubbles.

Recently, Chen and Marshall [8] proposed a two-dimensional particle (vortex) method
for particulate flows with two-way coupling. The coupling was achieved through a vorticity
source term, and the (vortex) particle support by a particle creation scheme. In the context
of particle (vortex) methods, the present study is one of the first studies to consider three-
dimensional, viscous, particulate flow.

The present algorithm is validated by considering the particle laden flow in an invis-
cid, two-dimensional vortex patch. The results are compared with high-resolution finite-
difference solutions [8] and the convergence is studied by varying the numerical parameters
of the problem. Next, we consider the three-dimensional simulation of an initially spherical
suspension of solid particles falling due to gravity in a viscous fluid. This case demonstrates
the adaptivity of the algorithm and the solution is compared qualitatively with a drop falling
in a viscous fluid [34, 48, 47].

The remaining part of the paper is organised as follows: Section 2 outlines the governing
equations, and Section 3 the numerical method. The results are presented in Section 4, and
summarised in Section 5.

2. GOVERNING EQUATIONS

We consider simulations of three-dimensional particle-laden flows. In our treatment we
employ the following approximations: (i) the particles consist of rigid spheres of the same
diameter, (ii) the particle forces are limited to fluid drag and gravity forces, (iii) particle
collision is not taken into account, and (iv) the flow is periodic and incompressible. With
these assumptions, the equations governing the motion of the solid particles and the fluid
elements are described as follows.

2.1. Fluid Motion

The governing equation for an incompressible fluid with constant kinematic viscosity (ν)
may be given in terms of the vorticity transport equation

Dω

Dt
= (ω ·∇)v+ ν∇2ω + φ, (1)

wherev is the velocity,ω =∇× v the fluid vorticity, andD/Dt = ∂/∂t + v ·∇ the ma-
terial derivative. The vorticity source term(φ) is expressed as

φ = 1

ρ
∇× f , (2)

wheref is the body force per unit volume, andρ the fluid density.
The fluid velocity can be recovered from the vorticity through a Poisson equation with

the aid of a solenoidal vector potential,Ψ (such thatv=∇×Ψ),

∇2Ψ = −ω. (3)

In this study we conduct simulations in a domain periodic in all three space dimensions
with lengthL so thatΨ(x) = Ψ(x + L).
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2.2. Solid Particle Motion

In the following the solid particle quantities are denoted by the subscriptp, while quan-
tities pertaining to the fluid do not have a subscript.

The solid particles are considered as rigid spheres with diameter(dp) and density(ρp).
Their motion is described by their instantaneous position(xp) and velocity(up) and is
governed by Newton’s law,

dxp

dt
= up,

(4)

ρpvolp
dup

dt
= f p,

wherep = 1, . . . , Np, volp = πd3
p/6 is the volume of the particle, andf p is the total force

acting on the particle. In the present paper we have limited the number of forces to include
viscous drag forcef d and gravityf g. However, the inclusion of additional forces (e.g., added
mass, pressure forces) is straightforward. Thus,

f p = f d + f g. (5)

The viscous drag force induced by the flow on the solid particles is described as [37]

f d =
1

2
ρCd

π

4
d2

p(v(xp)− up)|v(xp)− up|, (6)

wherev(xp) is the fluid velocity at the position of the particle,Cd is the drag coefficient,

Cd =
{ 24

Rep

(
1+ 0.15Re0.687

p

)
, Rep < 1000,

0.44, Rep > 1000,
(7)

and Rep is the particle Reynolds number,

Rep = |up − v(xp)|dp

ν
. (8)

The particles are furthermore subjected to a gravity force

f g = volp(ρp − ρ)g, (9)

whereg is the acceleration due to gravity.
The source term in Eq. (2) models the creation of vorticity from the solid surfaces of the

particles. This vorticity source is in general proportional to the pressure gradient and the
tangential acceleration of the surface of the particle and accounted for here by a model drag
force; thusf = f d. The hydrostatic pressure forces(−volpρg) are accounted for without
directly producing any vorticity.
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3. VORTEX PARTICLE METHOD

3.1. Fluid Motion

We discretise the governing Navier–Stokes equations inv–ω form (Eq. (1)) using a vortex
particle method. The vorticity field is discretised usingN Lagrangian (vortex) particles,

ω(x) =
N∑

i=1

αi ησ (x− xi ), (10)

αi = voliω(xi ), (11)

where(xi ) and(αi ) denote the location and strength of the vortex particle, respectively.
The vorticity field of each particle is mollified over a support of sizeσ by a smooth function
ησ (x). Typical examples of such functions are radially symmetric Gaussians usually used in
pure Lagrangian methods or tensorial products of polynomials or splines in hybrid particle–
mesh methods. The order of the approximation is proportional to the number of moments
shared by the smoothing function and the Dirac delta-function (cf. [3, 22]).

The vortex particles are advected using a fractional two-step algorithm. During the first,
inviscid step, the particle locations are modified to account for convection while the particle
strengths are changed to account for vortex stretching,

dxi

dt
= v(xi ), (12)

dαi

dt
= voli (ω(xi ) ·∇)v(xi ), (13)

where i = 1, . . . , N. In the present computations, we use the conservative from(∇ ·
(ω : v)).

The inviscid step is followed by a second viscous step accounting for the effects of
diffusion and vorticity generation in the fluid elements induced by the solid particles. During
this step the vortex particles are considered “frozen” in their locations while their strength
is modified to account for the effects of diffusion

dxi

dt
= 0, (14)

dαi

dt
= voli (ν∇2ω(xi )+ φ(xi )), (15)

andi = 1, . . . , N. Using this Lagrangian algorithm the vortex elements automatically adapt
to areas of the flow field where vorticity is being generated by the motion of the solid
particles.

3.2. Diffusion

Particle methods are well suited to the discretisation of problems described by an integral
operator. The integral operator can be discretised using as quadrature points the location
of the particles which are not required to occupy regular grid locations. In order to handle
the diffusion operator in the context of particle methods the key idea is then to replace
the Laplacian with an equivalent integral operator. The links between integral and diffu-
sion operators have long been exploited in the field of kinetic equations, but in general in
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the other direction, namely, to derive a diffusion approximation of integral operators that
model particle collisions [40]. The Particle Strength Exchange (PSE) method introduced
by Degond and Mas-Gallic [17] replaces the Laplacian by an integral operator as

∇2ω(x) ≈ ∇2
σω(x) = σ−2

∫
[ω(y)− ω(x)]ζσ (y− x) dy. (16a)

The accuracy of this approximation is related to the moment properties ofζσ . For a method
of orderm the kernelζσ (x) = σ−3ζ(x/σ) is themth order diffusion kernel satisfying the
moment conditions∫ ∫ ∫

xαζ(x) dV = 2, if α = 2ei i ∈ {1, 2, 3}, 1≤ |α| ≤ m+ 1,∫ ∫ ∫
xαζ(x) dV = 0, if α 6= ei i ∈ {1, 2, 3},∫ ∫ ∫
|x|m+2|ζ(x)| dV <∞.

(16b)

Hereα = (α1, α2, α3) ∈ N3, xα ≡∏3
i=1 xαi

i , |α| =
∑3

i=1 αi , andei are the unit vectors
(1, 0, 0), (0, 1, 0), and(0, 0, 1), respectively; cf. [17].

The second-order kernel proposed by Cottet [14] is used (Fig. 1):

ζ(x) = 15

π2

1

|x|10+ 1
. (17)

When the integral operator is discretised we obtain an algorithm for the update of the
particle (vortex) strengths as

dαi

dt
= ν

σ 2

∑
j

ζσ (xi − x j )(voliα j − vol jαi ). (18)

FIG. 1. Second-order diffusion kernel used in the particle strength exchange scheme.
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3.3. Vortex-in-Cell

The computationally intensive part of particle (vortex) methods is the calculation of the
velocity field, as each particle induces a velocity field on all other particles. The classical
cost of the method scales asO(N2) but it can be reduced toO(N) or O(N log N) using
fast multipole methods [9] or particle–mesh techniques [23]. Particle–mesh techniques are
in general faster as they take advantage of the availability of fast Fourier transforms for
the solution of Poisson’s equation. They have the drawback that they require the presence
of a grid for the evaluation of the velocity. However, it should be emphasized that particle
methods require in general a periodic projection of the flow field carried by the particles
onto a set of overlapping particles. The projection onto a regular mesh uses a high-order
interpolation formula [15] that would be difficult to construct for mesh-free particle methods,
cf. [26, 31]. The accurate interpolation of particle–grid quantities is a subject of ongoing
investigation [42] and is further addressed in Section 3.5 of this paper.

The present study employs the particle–mesh technique using(Nx × Ny × Nz) grid
points with an equidistant mesh spacing (h). At each time step the vorticity field is con-
structed on the mesh from the particle (vortex) strength using high-order assignment func-
tions (see Section 3.4). The vector Poisson equation (Eq. (3)) is discretised using second-
order finite differences and solved subject to periodic boundary conditions using fast Fourier
transforms [43]. The velocity field and the vorticity stretching are computed on the mesh
using fourth-order finite differences and interpolated back onto the vortex particles to update
their position and strength. Second-order finite differences were also tested but were found
to produce a less solenoidal vorticity field than the fourth-order scheme.

3.4. Particle–Mesh Interpolation

A key aspect of particle–mesh techniques is the accurate and efficient assignment of
particle values to the mesh and the interpolation of the field quantities from the mesh to the
particles. Only these particle field variations with wavelengths longer than those described
by the mesh-spacing can be accurately represented by the respective mesh values. The finite
grid size produces a loss of information which may be viewed as an aliasing error [15].

The assignment of the mesh vorticity from the particle strength and the interpolation of
the particle values from the mesh use the moment-conserving M′

4 scheme proposed by
Monaghan [35] for one-dimensional smooth particle hydrodynamics and later applied
to two- and three-dimensional vortex methods by Cottet and Koumoutsakos [15]. These
moment-conserving interpolation kernels reduce the effects of aliasing without being im-
practical and they have compact support, that very closely approximates the ideal low-pass
filter sinc (x). The moment-conserving B-splinesSn possesses both properties and have
been shown to introduce minimal numerical dissipation in simulations using vortex meth-
ods [15]. They are continuous up to then− 1 derivative and therefore their Fourier transform
decays as−k−n. Their effectiveness in eliminating the effect of aliasing as a function of
the wave numberk and the grid wave numberkg = 2π/1x is expressed as|1−mkg/k|−n

[23]. High-order interpolation kernels can be constructed efficiently using a recursive for-
mulation as described by Sagredoet al.[42]. The interpolation formula in three dimensions
consists of a tensorial product of its one-dimensional counterparts and it can be expressed as

Γ j =
∑

i

Γi W

(
xj − xi

h

)
W

(
yj − yi

h

)
W

(
zj − zi

h

)
, (19)
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FIG. 2. M ′4 interpolation kernel for assignment and interpolation.

whereW(x) is the M′4 interpolation kernel

W(x) =


1− 5

2|x|2+ 3
2|x|3, |x| < 1,

1
2(2− |x|)2(1− |x|), 1< |x| < 2,

0, |x| > 2.

(20)

cf. Fig. 2, and(Γ j , x j ) and(Γ j , xi ) are the mesh and particle values, respectively (and vice
versa). Thus, in three dimensions a particle will assign values to the nearest 64 grid points,
and conversely interpolation involves the 64 nearest grid points.

The M′4 scheme conserves the first three moments of the interpolant, in particular the
vorticity moments(Ωi ).

Ω0 =
∫ ∫ ∫

ω dV,

Ω1 = 1

2

∫ ∫ ∫
x× ω dV, (21)

Ω2 = 1

3

∫ ∫ ∫
x× (x× ω) dV.

From a computational point of view, the interpolation can be implemented efficiently for
both vector and parallel computer architectures, since the field value at each particle can be
interpolated independently. This is generally not true for the assignment procedure where
grid points will receive contributions from more than one particle. In the present study
with approximately one vortex particle per grid point, sorting the vortex particles in a cell
index list and adding the particle contributions from the particles in the surrounding(4×
4× 4) cells results in short and inefficient loops. Instead, during the re-meshing procedure
(see below) the vortex particles are numbered according to their positions on the mesh in
increments larger than 4 (for the M′4 scheme) in each spatial direction, cf. Fig. 3. This secures
that vortex particles stored consecutively in memory will assign their strength to different
subsets of the mesh, hence allowing vectorisation. The assignment procedure is subsequently
split into pieces of vectorisable loops. For vector-parallel execution, the vectorised loop is
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FIG. 3. During the re-meshing the new vortex particles are created on the mesh in increments larger than four
in each spatial direction to allow vectorisation of the assignment procedure. The sketch shows a two-dimensional
example of the particle mesh and the numbering of the first 11 particles after re-meshing.

furthermore split into pieces, an inner and outer loop, which allows parallelisation of the
outer and vectorisation of the inner loop, respectively.

3.5. Vortex Particle Re-meshing

Lagrangian numerical methods enjoy automatic adaptivity and the elimination of the need
to discretise explicitly the non-linear convection term but at the same time it is necessary to
address the “grid” distortion induced by the flow map and to handle efficiently the resolution
of viscous effects on the particle (vortex) locations. This can be handled by a re-meshing of
the flow field. During re-meshing the particle strength is assigned to the mesh according to
Eq. (19) and the (vortex) particles are replaced by a new set of particles released from the grid
points where the mesh vorticity is non-negligible (i.e., where|ω|/|ωmax| > ε, andε ¿ 1).
The strength of the new particles is calculated using the formulas used for particle-mesh
interpolation (Eq. (19)); see Fig. 2. Thus, the present re-meshing scheme is conservative
(dΩ0/dt = 0) and avoids spurious fluid forcing, since the force and torque acting on the
fluid are proportional to the rate-of-change ofΩ1 andΩ2, respectively. Specifically, for
unbounded flows the fluid force(F) is given by [41]

F = −ρ dΩ1

dt
. (22)

Re-meshing may be viewed as a method for introducing sub-grid scaling in vortex meth-
ods to eliminate the spurious structures that are introduced by the (vortex) particle distortion.
In that sense re-meshing may be viewed as an effective way of introducing sub-grid scale
modeling to vortex methods and could serve as an alternative approach to the method of
hairpin removal [11, 19] and the use of Lagrangian anisotropic sub-grid scale models [13,
28]. The need for re-meshing in vortex particle methods was demonstrated by Knio and
Ghoniem [26] and Koumoutsakos [27] for studies of two- and three-dimensional inviscid
flow problems. Re-meshing is also a key aspect of the simulation of diffusion using the
method of particle strength exchange. As the support of the vorticity increases by diffusion
the PSE scheme requires the presence of “ghost” particles to effectuate this increase of the
vorticity support.
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Additionally, in the case of particle laden flow re-meshing is utilized to ensure the gen-
eration of vortex particles in the regions of the flow where the rotational part of the forcing
from the solid particle is non-zero and fluid vorticity is created according to Eq. (2). The
frequency of re-meshing can be determined by monitoring the particle overlap and acting
when a certain threshold is exceeded. However for the flows under consideration diagnos-
tics such as linear and angular impulse did not differ by more than 5% from cases where
re-meshing was employed after every time step. Thus, re-meshing is currently performed at
the end of each time step to allow efficient identification of neighbouring (vortex) particles
during the diffusion procedure for the particle strength exchange scheme and to secure an
optimal support of the vorticity field.

3.6. Solid Particle Motion

The forces on the solid particles given by Eqs. (6)–(9) are computed by interpolating the
fluid velocity obtained on the mesh onto the solid particles using the M′

4 scheme (Eq. (19))

v(xp) =
∑

m

vmW(xp − xm). (23)

The position and velocity are updated according to Eq. (4) using the second-order leapfrog
scheme

u
n+ 1

2
p = u

n− 1
2

p + δt f n
p

ρpvolp
, (24)

xn+1
p = xn

p + δtu
n+ 1

2
p , (25)

and where the superscript(n) indicates the time step.
The velocity of the solid particles at time step(n) required in the calculation off n

p (cf.
Eq. (6)) is approximated by the velocity at(n− 1

2), or computed by iteration

un
p ≈

1

2

(
ũ

n+ 1
2

p + u
n− 1

2
p

)
, (26)

whereũ
n+ 1

2
p is the most recent value ofup at time(n+ 1

2) computed by iteration of Eqs. (6),
(26), and (24), respectively. The leapfrog scheme offers in the present study a reasonable
compromise between accuracy, storage requirements, and stability. Furthermore, the time-
symmetry secures conservation of energy [23].

3.7. Two-Way Coupling

The two-way coupling is achieved in conjunction with the vortex particle re-meshing
and the computation of diffusion. The force imparted by the solid particles onto the fluid
elements is interpolated onto the mesh and is differentiated to obtain the vorticity source
term. The algorithm proceeds with the following steps. After the calculation of the inviscid
step (Eqs. (12) and (13)):

1. Assign the mesh vorticity from theN vortex particles using Eq. (19)

ω(xm) = 1

h3

N∑
i

αi W(xm − xi ).
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2. Assign the mesh source term from the fluid forces acting on theNp solid particles

f (xm) = −
Np∑
p

f dW(xm − xp).

3. Compute diffusion on the mesh using the particle strength exchange (Eq. (18)) where
(h) is the smoothing length scale(σ ).

4. Compute the vorticity source term(∇h × ( f /ρ)) and update the mesh vorticity.
5. “Re-initialize” vortex particles at the mesh points where the vorticity is non-negligible.

By applying the same interpolation kernel for the interpolation of the fluid velocity onto
the solid particles and for the assignment of the forces on the solid particles onto the
fluid elements, the conservation of total kinetic energy balance of the system is enforced;
cf. Sundaram and Collins [44]. Also, since the interpolation kernel satisfies

∑
q W(x −

xq) = 1, the exchange of momentum between the two phases is conservative [44]. The
conservation of momentum is demonstrated in the three-dimensional test case presented in
Section 4.2.

3.8. Algorithm Summary

To summarise, the present three-dimensional particle (vortex) algorithm for particle-
laden flows with two-way coupling proceeds as follows. Given the initial vorticity field
and volume of the vortex particles, we calculate the initial particle strength according to
α0

i = voliω(x0
i ).

1. Inviscid step:
(i) Assign the mesh vorticity from the vortex particles:

ω(xm) = 1

h3

N∑
i

αi W(xm − xi ).

(ii) Solve the Poisson equation for the vector potential(∇2Ψ = −ω).
(iii) Compute the fluid velocity from the vector potential(v=∇h ×Ψ).
(iv) Compute the vorticity stretching term(∇h · (ω : v)).
(v) Compute the forces on the solid particles in the first step of the Runge–Kutta cycle:

a. Interpolate the fluid velocity to the position of the solid particles:

v(xp) =
∑

m

vmW(xp − xm).

b. Compute the fluid forces on the solid particles using Eqs. (6)–(9).
c. Update the velocity and position of the solid particles according to Eqs. (24)

and (25).
d. Enforce periodic boundary conditions for the solid particles.

(vi) Interpolate the velocity to the vortex particles:

vi =
∑

m

vmW(xm − xi ).
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(vii) Interpolate the stretching to the vortex particles:

(αi ·∇)vi = h3
∑

m

∇h · (ω : v)W(xm − xi ).

(viii) Update the position and strength of the vortex particles (Eqs. (12) and (13)).
(ix) Enforce periodic boundary conditions for the vortex particles.

2. Viscous step (compute the influence from the diffusion and the source term): See
Section 3.7.

3. Return to Step 1.

The inviscid step is solved using low-storage, third-order Runge–Kutta time integration
[50]; thus Step (1) is repeated accordingly. Step (v) is only invoked during the first step of
the Runge–Kutta cycle.

4. RESULTS

In the following, we present validation studies of particle laden flows in a two-dimensional
inviscid vortex patch for which one-dimensional high resolution finite difference solution
exists [8].

Next, we consider the three-dimensional flow that develops from an initially spherical
suspension of particles falling due to gravity in an quiescent fluid. The phenomena observed
display a remarkable resemblance to that of a drop falling in a viscous fluid; cf. Thomson
and Newall [48].

4.1. Validation Study: Gaussian Patch

The dynamic behaviour of a suspension of particles in a two-dimensional inviscid vortex
patch is simulated, applying the present method in a “two-dimensional” mode by using four
grid points in the direction normal to the plane of the patch and neglecting the vorticity-
stretching term. The influence of the grid resolution(Ng), the number of particles(Np),
and the time step(δt) is studied by performing a systematic refinement of these parameters.
The different cases are listed in Table 1, whereNp is the total number of solid particles used

TABLE 1

Numerical Parameters Used in the Study of a Suspension

in a Two-Dimensional Vortex Patch

Case Np Ng δt

1 104 128× 128 0.1
2 105 128× 128 0.1
3 103 128× 128 0.1
4 104 64× 64 0.1
5 105 64× 64 0.1
6 104 64× 64 0.2
7 104 256× 256 0.1

Note. Np is the total number of particles used in the three-dimensional method
and corresponds toNp/4 for the two-dimensional case.Ng is the number of
grid points, andδt the non-dimensional time step.
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and hence corresponds toNp/4 particles in two dimensions. The results are compared with
the two-dimensional finite-difference and vortex method results of Chen and Marshall [8].

Following [8] the initial vorticity (ω(r )) and concentration(c(r )) fields are truncated
Gaussians; i.e.,ω(r ) = ω0 exp(−r 2/r 2

0), and c(r ) = c0 exp(−r 2/r 2
0) for r < 2.5r0 and

zero elsewhere, wherer0 is the initial radius of the vortex patch. The results are non-
dimensionalised usingr0, and the total circulation0 = ω0πr 2

0(1− e−(2.5)
2
).

The initial vorticity field is discretised using vortex particles on the VIC mesh. The initial
position of the solid particles is given by a two-dimensional normal distribution with zero
mean and variancer 2

0/2, and a uniform random distribution in the third direction. The initial
particle velocity equals the fluid velocity.

The flow is solved subject to a periodic boundary condition in all spatial direction and to
avoid significant influence from the mirror vortex patches the size of the computational do-
main(L) is chosen sufficiently large (hereL = 20r0). The radial vorticity and concentration
profiles are averaged in the circumferential direction using simple binning.

The vorticity and concentration profiles obtained with the present method for a mesh
resolution of 2562 and using 104 solid particles are compared in Fig. 4 with the

FIG. 4. Vorticity (a) and concentration (b) profiles as function of radius as predicted by the present method
(Case 7) att = 0 (+++), t = 20(×××), andt = 60 (∗ ∗ ∗). t = 140 (h h h). Lines: finite-difference solution
of Chen and Marshall [8].
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FIG. 5. Vorticity (a) and concentration (b) profile as function of radius for different number of solid particles.
Present simulations: —:Np = 103 (Case 3); – – –: Np = 104 (Case 1); - - -:Np = 105 (Case 2). Finite-difference
solution of Chen and Marshall [8]:· · ·.

finite-difference solution of Chen and Marshall [8]. Good agreement is observed during
the entire simulation (up tot = 140).

Next, we study the dependence of the number of solid particles(Np) on the solution
by varying the number of particles two orders of magnitude,Np = 103, 104, and 105,
corresponding to 250, 2500, and 25,000 solid particles in two dimensions. The vorticity
profiles shown in Fig. 5a are in close agreement with the finite-difference solution (root mean
square errors of 1.34%, 0.86%, and 0.75%, respectively) except the case using 103 particles,
which underestimates the vorticity in the central region of the patch. The concentration
profiles (Fig. 5b) exhibit a larger variation than observed in the vorticity but converge to the
finite-difference solution as the number of particles is increased (root mean square errors
of 6.1%, 2.2%, and 2.8%, respectively). The noise mainly displayed in the concentration
profiles (Fig. 5b) is caused by the random initial position of the particles and the inviscid
nature of the problem.

The influence of the time step size is demonstrated in Fig. 6 for simulations using a 642

mesh and 104 particles and for non-dimensional time steps of 0.1 and 0.2. For the parameters
investigated a non-dimensional time step of 0.1 appears to be sufficient.



THREE-DIMENSIONAL VORTEX METHODS 53

FIG. 6. Vorticity (a) and concentration (b) profile as function of radius for different time step size using a
642 mesh and 104 particles. Present simulations: —:δt = 0.1 (Case 4); – – –:δt = 0.2 (Case 6). Finite-difference
solution of Chen and Marshall [8]: - - -.

Finally, the influence of the mesh resolution is studied using 642, 1282, and 2562 grid
points, a time step of 0.1, and 104 solid particles, respectively. Good agreement is again
observed (Fig. 7) for all but the coarsest mesh, which exhibits some deviations in the vorticity
field in the centre of the patch. Thus we conclude that in the parameter range studied the
present method produces results in close agreement with those of the high-resolution finite-
difference solutions presented in [8].

4.2. Three-Dimensional Falling“Blob”

In this section we consider the three-dimensional problem of a suspension of particles
initially contained within a spherical boundary and falling due to gravity. The fluid is
initially in a quiescent state, without vortex particles, and the test serves to validate the
adaptive creation of vortex particles according to the vorticity source term.

The apparent similarity of this problem to that of a viscous drop falling in a fluid has
recently been noted by Batchelor and Nitsche [2] in a study of rising bubbles in fluidized
beds, and by the same authors [36] for a falling “blob” of particles, where they refer to a
“blob” as “a finite volume of a dispersion of particles in a liquid.” At low particle Reynolds
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FIG. 7. Vorticity (a) and concentration (b) profile for different mesh resolutions. Present simulations: —:
Ng = 642 (Case 4); – – –:Ng = 1282 (Case 1); - - -:Ng = 2562 (Case 7). Finite-difference solution of Chen and
Marshall [8]:· · ·.

numbers(Rep < 1) they assumed that the particles interact as Stokelets and included an
additional short-range repulsive force to regularise the problem. They found that the blob
descends faster than a drop of similar density and viscosity and that particles are shed in
the wake of the blob by hydrodynamic dispersion. The speed of the blob(u) was compared
with the Hadamard and Rybczy´nski (H–R) formula

U = (ρ̄ − ρ)gD2

12µ

µ+ µ̄
µ+ 3

2µ̄
, (27)

whereµ = ρν is the dynamic viscosity of the fluid,g is the acceleration due to gravity, and
D, µ̄, andρ̄ are the diameter, viscosity, and density of the drop, respectively.

Similar fluid-like behaviour of a suspension has been noted by Powell and Mason [39]
in experiments with particle dispersions in laminar shear flows and by Poletto and Joseph
[38] in studies of settling spheres in a suspension.

Also, recently Sundaram and Collins [45] used similar arguments in their comparison
of particulate flows with pure fluids at an elevated density and viscosity in a study of
particle-laden isotropic turbulent flows.
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TABLE 2

Numerical Parameters Used in the Study of a Three-Dimensional “Blob”

Falling Due to Gravity

Case Np Ng µ̄/µ ρ̄/ρ Re Fr u0/U

1 105 64× 64× 64 2.0 2.0 10 0.26 0
2 105 64× 64× 64 35.0 1.6 180 1.79 0
3 105 64× 64× 128 35.0 1.6 180 1.79 2.3

Note. Np is the number of solid particles,Ng is the number of grid points, ¯µ/µ is the
viscosity ratio, ¯ρ/ρ is the density ratio,u0/U is the initial velocity, and Re and Fr are the
Reynolds and Froude numbers, respectively.

Other numerical studies include the early work of Childress and Peyret [10] on bioconvec-
tion using an Eulerian–Lagrangian formulation and the recent study of three-dimensional
particle thermals by Li [29].

In the following, we shall compare the speed of a blob with the H–R formula (Eq. (27))
assuming that the density of the blob is given in terms of the (initial) volume fraction(φ) as
ρ̄ = ρp + (1− φ)ρ and that the viscosity is given by the expression due to Lundgren [30],
valid for high-volume fractions,

µ̄

µ
≈ 1

1− 5
2φ
. (28)

Generally, the parameters governing the flow are the viscosity ratio(µ̄/µ), the density ratio
(ρ̄/ρ), the blob Reynolds number Re= ρV D/µ, and the Froude number Fr= V/

√
gD,

whereV is a characteristic velocity. In the present study we shall use the H–R velocity
as the characteristic velocity(V = U ), reducing the number of parameters to the ratio of
viscosityµ̄/µ, the ratio of density ¯ρ/ρ, the initial velocityu0/U , and the Froude number
Fr= U/

√
gD. The results are presented in non-dimensional form based on the diameter of

the blob and the H–R velocity.
Three cases are studied. The first case involves a drop falling from rest at moderate

Reynolds and Froude numbers (Re= 10 and Fr= 0.26), allowing comparison of the

FIG. 8. Speed of the centre of gravity of the suspension (Case 1).
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FIG. 9. Cross section of the blob at different non-dimensional times. Top:tU/D = 0.050; bottom:tU/D =
1.325 (Case 1).

terminal velocity with the H–R formula. The latter two cases involve drops falling at higher
Reynolds numbers (Re= 180 and 230) matching the viscosity and density ratios at param-
eters similar to those used by Mitts [34] in studies of falling drops in miscible fluids.

4.2.1. Case 1. The first simulation involves a drop falling from rest at Reynolds number
Re= 10, and Froude number of Fr= 0.26. At this relatively low Reynolds number we

FIG. 10. Iso-surface of vorticity(|ω|/|ωmax| = 0.1) and one-tenth of the solid particles attU/D = 1.325
(Case 1).
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FIG. 11. Total force on the particular and fluid phase.−×−×−: total fluid force;−+−+−: total solid
particle force;−∗−∗−: total force on system.

expect that the terminal velocity of the blob can be compared with the H–R velocity. The
viscosity and density ratios are ¯µ/µ = ρ̄/ρ = 2. The drop is modelled by placing 105 solid
particles within a spherical boundary of diameterD and the size of the computational domain
is (10D × 10D × 10D) discretised using 643 grid points. The parameters are summarised
in Table 2.

The time history of the non-dimensional speed of the centre of gravity of the blob is
shown in Fig. 8. The estimated limiting value ofu/U is 0.89, thus in fair agreement with
the H–R formula considering the approximations involved. A cross section of the blob
at tU/D = 0.050 andtU/D = 1.325 is shown in Fig. 9. At this finite Reynolds number,
the blob deforms during the descent, but remains intact in the time span studied. The
corresponding vorticity field and one-half of the solid particles are shown in Fig. 10 at
tU/D = 1.325. The blob has created a vortex ring that propagates with the blob.

The conservation of momentum between the phases is demonstrated by considering the
time history of the total vertical force acting on the solid particles(F =∑ fd + fg) and

FIG. 12. Speed of the centre of gravity of the suspension (Case 2).
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FIG. 13. Cross section of the blob at different non-dimensional times(tU/D). (a) 0.00, (b) 7.18, (c) 10.77,
(d) 14.36, (e) 17.94, and (f) 21.53.

the total fluid forces(−∑ fd) normalised by the total gravitational force(Fg =
∑

fg)

on the solid particles as shown in Fig. 11. The total force on the solid particles is evaluated
from the rate of change of the particle momentum as

∑
d(mvp)/dt, and the fluid force

is computed from Eq. (22). The total force on the solid particles decreases monotonically

FIG. 14. Picture of experimental results from Mitts [34].
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FIG. 15. Sketch of unstable vortex ring from experiments by Thomson and Newall [48].
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FIG. 16. Vorticity iso-surfaces (red,|ω|/|ωmax| = 0.12) and solid particles (1/2 of total) at different non-
dimensional time (Case 2). From the toptU/D = 3.59, 35.9, 53.8, 71.8, and 171.5.
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FIG. 16—Continued
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FIG. 16—Continued

towards zero (as drag is being balanced by gravity) and the fluid force increases correspond-
ingly. For the duration of the simulation the momentum is clearly conserved.

4.2.2. Case 2. The second case involves a highly viscous drop(µ̄/µ = 35) falling at
a Reynolds number of 180 and Froude number of 1.79, respectively. The density ratio is
ρ̄/ρ = 1.6. The parameter values are similar to the values used in the experiments of viscous
drops falling in a miscible fluid by Mitts [34]. In these experiments the drops were formed
above the bath and allowed to fall some distance before penetrating the surface of the bath.
Thus the simulations differ from the experiments in terms of initial conditions.

The speed of the centre of gravity of the blob computed with the present method is shown
in Fig. 12. It is observed that the blob accelerates from rest until it reaches a maximum speed
of approximately one-fifth of the H–R speed, followed by a deceleration to a mean value
of approximately1

15 of the H–R value. The cause of the deceleration can be inferred from
snapshots of the cross section of the blob as shown in Fig. 13. As the blob descends it de-
forms from the initial spherical shape into an oblate spheroid due to the resistance exerted
by the fluid. An intrusion develops at the rear stagnation point and the blob subsequently
forms into a spherical cap shape as shown in Fig. 13c. As the blob expands the drag force
increases, hence retarding the blob. At later times, the blob transforms into an unstable ring.
Bulges form along the ring, and these form new blobs that descend faster than the main ring.
After traveling some distance these blobs again form new rings in a cascade-like fashion.
Similar observations were made in the experiments by Mitts [34] (cf. Fig. 14) and sketched
in the work of Thomson and Newall [48] (Fig. 15). The solid particles and the iso-surface
of vorticity (|ω|/|ωmax| = 0.08) are shown in Fig. 16. The particles are indicated with
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FIG. 17. Vorticity iso-surfaces (red) and the vortex particles (Case 2). Top:tU/D = 3.59; bottom:tU/D =
53.8.
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FIG. 18. Speed of the centre of gravity of the suspension (Case 3).

white spheres and partially covered by the transparent iso-surface shown in red. The vortex
particle support is shown in Fig. 17, where the vortex elements are plotted as spheres with a
diameter proportional to their strength. The figure clearly demonstrates the adaptivity of the
method.

4.2.3. Case 3. This last test case involves a blob with physical properties identical to
those in the previous case (Case 2), but for this study the blob is allowed to fall some distance
with a constant velocity, creating fluid vorticity, before it is “released” into the flow. This

FIG. 19. Cross section of the blob at different non-dimensional times(tU/D) (Case 3). (a) 0.03, (b) 0.75,
(c) 1.47, (d) 2.91, (e) 7.21, and (f) 21.57.
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FIG. 20. Vorticity iso-surfaces (red) and solid particles (1/2 of total) at different non-dimensional times
(Case 3.) From the top:tU/D = 3.59, 7.18, 10.77, 14.36, 17.94, and 21.53.
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FIG. 20—Continued
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FIG. 20—Continued
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FIG. 21. Vorticity iso-surfaces (red) and the vortex particles (Case 3) attU/D = 21.53.

effective one-way coupling of the phases is similar to the model proposed by Thomson and
Newall [48] for the formation of a vortex ring from a drop falling into a bath.

The time history of the speed of the drop is shown in Fig. 18. As the drop is released at
tU/D = 0.72 the speed decreases from the initial value of 2.3 to a value of 0.5 followed by
a temporary increase to approximately 0.75, after which the speed decreases monotonically.
The initial deceleration is attributed to an expansion of the blob as shown in Figs. 19a–19c.
The blob transforms into a ring attU/D ≈ 8, but with a loss of particles shed in the wake;
cf. Fig. 19f. The increase in speed of the centre of gravity attU/D ≈ 2.5 is due to a strong
reorganisation of the particles, cf. Figs. 19d, 19e. Similar observations were noted in a study
of vortex rings by Mansfieldet al. [31].

The iso-surface of the vorticity(|ω|/|ωmax| = 0.02) and the solid particles are shown
in Fig. 20. The initial “rigid” drop introduces an intense wake which remains for some
time contrary to the previous case where the vorticity more closely follows the drop. The
corresponding vortex particles supporting the vorticity field are shown in Fig. 21.

5. CONCLUSIONS

A three-dimensional vortex particle method has been developed for the study of two-phase
particulate flows with two-way coupling. The method employs a Lagrangian procedure for
motion of the solid particles and utilises well established formulas for the hydrodynamic
forces acting on solid particles. The fluid flow is solved using an adaptive particle method
based on an enhanced vortex-in-cell algorithm. The individual fluid elements carrying



THREE-DIMENSIONAL VORTEX METHODS 69

vorticity evolve subject to convection, stretching, and diffusion, and change due to the vor-
ticity source term determined from the rotational part of the forcing induced by the solid
particles. An adequate particle support for this source term is secured by a re-meshing strat-
egy which combines the forcing term with projection of the Lagrangian fluid elements onto
a regular grid. The projection uses high-order, moment-conserving spline formulas, hence
minimising spurious forcing of the flow. The re-meshing procedure allows the adaptive cre-
ation of vortex elements in the regions of the flow where the local vorticity is non-negligible.

The Lagrangian procedure adopted for the fluid flow avoids the discretisation of the
non-linear term making this methods an interesting alternative to traditional grid based
methods.

The method is validated by the simulation of a suspension of solid particles embedded
in an inviscid, two-dimensional patch of vorticity. The results are found to be in good
agreement with previous benchmark calculations. The features of the proposed method
are further investigated through the study of an initially spherical suspension of particles
falling due to gravity in a quiescent viscous fluid. At low Reynolds numbers the suspension
forms a steady vortex ring travelling with the suspension. The speed of the ring is found
in resonable agreement with the classical Hadamard and Rybczy´nski velocity for a drop
falling in a viscous fluid.

For higher Reynolds and Froude numbers the vortex ring is unstable, forming bulges
along its circumference. As these bulges descend new vortex rings are created in a cascade-
like fashion and in qualitative agreement with experimental observations of drops falling
in a viscous fluid, cf. Thompson [47]. The instability was found to depend on the initial
vorticity field, and further studies are under way to quantify this dependence.
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